Displaying 561 – 580 of 644

Showing per page

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Universality of the best determined terms method

Jiří Neuberg (1979)

Aplikace matematiky

The properties are studied of the best determined terms method with respect to an a priori decomposition R ( T ) . The universal approximation to the normal solution of the first kind Fredholm integral equation is found.

Weaker convergence conditions for the secant method

Ioannis K. Argyros, Saïd Hilout (2014)

Applications of Mathematics

We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.

Weakly coercive mappings sharing a value

J. M. Soriano (2011)

Czechoslovak Mathematical Journal

Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over 𝕂 has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.

Currently displaying 561 – 580 of 644