On the notion of Jacobi fields in constrained calculus of variations
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of...