Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...
This paper introduces a new approach for the joint alignment of a large collection of segmented images into the same system of coordinates while estimating at the same time an optimal common coordinate system. The atlas resulting from our group-wise alignment algorithm is obtained as the hidden variable of an Expectation-Maximization (EM) estimation. This is achieved by identifying the most consistent label across the collection of images at each voxel in the common frame of coordinates. In an...
* This work was supported by National Science Foundation grant DMS 9404431.In this paper we prove that the Newton method applied to the generalized equation y ∈ f(x) + F(x) with a C^1 function f and a set-valued map F acting in Banach spaces, is locally convergent uniformly in the parameter y if and only if the map (f +F)^(−1) is Aubin continuous at the reference point. We also show that the Aubin continuity actually implies uniform Q-quadratic convergence provided that the derivative of f is Lipschitz...