Displaying 301 – 320 of 839

Showing per page

Dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation

Ladislav Lukšan (1986)

Aplikace matematiky

The paper describes the dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation. Two cases are analyzed in detail, differring in linear dependence of gradients of the active functions. The complete algorithm of the dual method is presented and its finite step convergence is proved.

Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities

M. Hintermüller, R. H. W. Hoppe, C. Löbhard (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical...

Economic equilibrium through variational inequalities

Magdalena Nockowska-Rosiak (2009)

Applicationes Mathematicae

The purpose of this paper is to present an alternative proof of the existence of the Walrasian equilibrium for the Arrow-Debreu-McKenzie model by the variational inequality technique. Moreover, examples of the generalized Arrow-Debreu-McKenzie model are given in which the price vector can reach the boundary of the orthant allowing a commodity to be of price zero at equilibrium. In such a case its supply exceeds demand. It is worth mentioning that utility functions in this model are allowed not to...

Empirical regression quantile processes

Jana Jurečková, Jan Picek, Martin Schindler (2020)

Applications of Mathematics

We address the problem of estimating quantile-based statistical functionals, when the measured or controlled entities depend on exogenous variables which are not under our control. As a suitable tool we propose the empirical process of the average regression quantiles. It partially masks the effect of covariates and has other properties convenient for applications, e.g. for coherent risk measures of various types in the situations with covariates.

Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space

Pedro Merino, Fredi Tröltzsch, Boris Vexler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.

Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints

Eduardo Casas (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....

Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints

Eduardo Casas (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...

Currently displaying 301 – 320 of 839