Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Total overlapping Schwarz' preconditioners for elliptic problems

Faker Ben Belgacem, Nabil Gmati, Faten Jelassi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math.336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the...

Two Numerical Methods for the elliptic Monge-Ampère equation

Jean-David Benamou, Brittany D. Froese, Adam M. Oberman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer. Math.54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski et al., Japan...

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes...

Two-sided bounds of the discretization error for finite elements

Michal Křížek, Hans-Goerg Roos, Wei Chen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis....

Two-sided bounds of the discretization error for finite elements

Michal Křížek, Hans-Goerg Roos, Wei Chen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis. ...

Currently displaying 21 – 26 of 26

Previous Page 2