The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Over the last three decades Computational Fluid Dynamics (CFD) has gradually joined the
wind tunnel and flight test as a primary flow analysis tool for aerodynamic designers. CFD
has had its most favorable impact on the aerodynamic design of the high-speed cruise
configuration of a transport. This success has raised expectations among aerodynamicists
that the applicability of CFD can be extended to the full flight envelope. However, the
complex nature...
Fast direct solvers for the Poisson equation with homogeneous Dirichlet and Neumann boundary conditions on special triangles and tetrahedra are constructed. The domain given is extended by symmetrization or skew symmetrization onto a rectangle or a rectangular parallelepiped and a fast direct solver is used there. All extendable domains are found. Eigenproblems are also considered.
The present paper deals with the numerical solution of the nonlinear heat equation. An iterative method is suggested in which the iterations are obtained by solving linear heat equation. The convergence of the method is proved under very natural conditions on given input data of the original problem. Further, questions of convergence of the Galerkin method applied to the original equation as well as to the linear equations in the above mentioned iterative method are studied.
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...
The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...
Currently displaying 1 –
17 of
17