Page 1 Next

Displaying 1 – 20 of 38

Showing per page

A comparison of the accuracy of the finite-difference solution to boundary value problems for the Helmholtz equation obtained by direct and iterative methods

Václav Červ, Karel Segeth (1982)

Aplikace matematiky

The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments...

A Legendre Spectral Collocation Method for the Biharmonic Dirichlet Problem

Bernard Bialecki, Andreas Karageorghis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Legendre spectral collocation method is presented for the solution of the biharmonic Dirichlet problem on a square. The solution and its Laplacian are approximated using the set of basis functions suggested by Shen, which are linear combinations of Legendre polynomials. A Schur complement approach is used to reduce the resulting linear system to one involving the approximation of the Laplacian of the solution on the two vertical sides of the square. The Schur complement system is solved by a...

A multilevel method with correction by aggregation for solving discrete elliptic problems

Radim Blaheta (1986)

Aplikace matematiky

The author studies the behaviour of a multi-level method that combines the Jacobi iterations and the correction by aggragation of unknowns. Our considerations are restricted to a simple one-dimensional example, which allows us to employ the technique of the Fourier analysis. Despite of this restriction we are able to demonstrate differences between the behaviour of the algorithm considered and of multigrid methods employing interpolation instead of aggregation.

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A numerical study on Neumann-Neumann methods for hp approximations on geometrically refined boundary layer meshes II. Three-dimensional problems

Andrea Toselli, Xavier Vasseur (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present extensive numerical tests showing the performance and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from hp finite element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal.24 (2004)...

A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization

Chunmei Wang (2014)

Applications of Mathematics

In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by ( 1 + log ( H / h ) ) 2 , where H and h are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.

Currently displaying 1 – 20 of 38

Page 1 Next