The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Newton's iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each iteration of Newton's method, a conjugate gradient based decomposition method is applied to the matrix of the linearized system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization at each step.
This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...
This paper is concerned with the dual formulation of the interface problem
consisting of a linear partial differential equation with variable coefficients
in some bounded Lipschitz domain Ω in (n ≥ 2)
and the Laplace equation with some radiation condition in the
unbounded exterior domain Ωc := .
The two problems are coupled by transmission and
Signorini contact conditions on the interface Γ = ∂Ω.
The exterior part of the
interface problem is rewritten using a Neumann to Dirichlet mapping...
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996).
We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators
(Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...
We introduce and analyze a numerical strategy
to approximate effective coefficients in stochastic homogenization of discrete elliptic
equations. In particular, we consider the simplest case possible: An elliptic equation on
the d-dimensional lattice
with independent and identically distributed conductivities on the associated edges.
Recent results by Otto and the author quantify the error made by approximating
the homogenized coefficient by the averaged energy of a regularized
corrector (with...
A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.
A sparse algebraic multigrid method is studied as a cheap and accurate
way to compute approximations of Schur complements of matrices
arising from the discretization of some symmetric and positive definite
partial differential operators. The construction of such a multigrid is
discussed and numerical experiments are used to verify the properties
of the method.
Currently displaying 1 –
13 of
13