The search session has expired. Please query the service again.
In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the norm for the sequence of discrete operators....
In this paper we consider the Maxwell resolvent operator and its finite element
approximation. In this framework it is natural the use of the edge element
spaces and to impose the divergence constraint in a weak
sense with the introduction of a Lagrange multiplier, following
an idea by Kikuchi [14].
We shall review some of the known properties for edge element
approximations and prove some new result. In particular we shall prove a
uniform convergence in the L2 norm for the sequence of discrete...
A discretized boundary value problem for the Laplace equation with the Dirichlet and Neumann boundary conditions on an equilateral triangle with a triangular mesh is transformed into a problem of the same type on a rectangle. Explicit formulae for all eigenvalues and all eigenfunctions are given.
The Coupled Cluster (CC) method is a widely used and highly successful high precision method for the solution of the stationary electronic Schrödinger equation, with its practical convergence properties being similar to that of a corresponding Galerkin (CI) scheme. This behaviour has for the discrete CC method been analyzed with respect to the discrete Galerkin solution (the “full-CI-limit”) in [Schneider, 2009]. Recently, we globalized the CC formulation to the full continuous space, giving a root...
Currently displaying 1 –
8 of
8