The search session has expired. Please query the service again.
We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.
We consider a model eigenvalue problem (EVP) in 1D, with
periodic or semi–periodic boundary conditions (BCs). The discretization of
this type of EVP by consistent mass finite element methods (FEMs) leads to
the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric
matrices, with a certain (skew–)circulant structure. In this paper we fix our
attention to the use of a quadratic FE–mesh. Explicit expressions for the
eigenvalues of the resulting algebraic EVP are established. This leads...
We present a sparse grid/hyperbolic cross discretization for many-particle problems.
It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization.
Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived
that, in the best case, result in complexities and error estimates which are independent of the number of particles.
Furthermore...
By using an inductive procedure we prove that the Galerkin finite element approximations of electromagnetic eigenproblems modelling cavity resonators by elements of any fixed order of either Nedelec’s edge element family on tetrahedral meshes are convergent and free of spurious solutions. This result is not new but is proved under weaker hypotheses, which are fulfilled in most of engineering applications. The method of the proof is new, instead, and shows how families of spurious-free elements can...
By using an inductive procedure we prove that the Galerkin
finite element approximations of electromagnetic eigenproblems
modelling cavity resonators by elements of any fixed order of
either Nedelec's edge element family on tetrahedral meshes are
convergent and free of spurious solutions. This result is not
new but is proved under weaker hypotheses, which are fulfilled
in most of engineering applications. The method of the proof
is new, instead, and shows how families of spurious-free
elements...
We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes...
This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.
Currently displaying 1 –
9 of
9