Page 1

Displaying 1 – 12 of 12

Showing per page

On a method of two-sided eigenvalue estimates for elliptic equations of the form A u - λ B u = 0

Karel Rektorys, Zdeněk Vospěl (1981)

Aplikace matematiky

The Collatz method of twosided eigenvalue estimates was extended by K. Rektorys in his monography Variational Methods to the case of differential equations of the form A u - λ B u = 0 with elliptic operators. This method requires to solve, successively, certain boundary value problems. In the case of partial differential equations, these problems are to be solved approximately, as a rule, and this is the source of further errors. In the work, it is shown how to estimate these additional errors, or how to avoid...

On Finite Element Methods for 2nd order (semi–) periodic Eigenvalue Problems

De Schepper, H. (2000)

Serdica Mathematical Journal

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is...

On the domain geometry dependence of the LBB condition

Evgenii V. Chizhonkov, Maxim A. Olshanskii (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The LBB condition is well-known to guarantee the stability of a finite element (FE) velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a certain constant should be positive and mesh-independent. The paper studies the dependence of the LBB condition on the domain geometry. For model domains such as strips and rings the substantial dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic substructures...

On the stability of Bravais lattices and their Cauchy–Born approximations

Thomas Hudson, Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods, we analyze...

On the stability of Bravais lattices and their Cauchy–Born approximations*

Thomas Hudson, Christoph Ortner (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods,...

Currently displaying 1 – 12 of 12

Page 1