Die Methode der finiten Elemente zur Lösung von elliptischen Randwertaufgaben.
In this paper, we discuss the choice of weights in averaging of local (subdomain) solutions on the interface for the BDDC method (Balancing Domain Decomposition by Constraints). We try to find relations among different choices of the interface weights and compare them numerically on model problems of the Poisson equation and linear elasticity in 3D. Problems with jumps in coefficients of material properties are considered and both regular and irregular interfaces between subdomains are tested.
This paper is devoted to some elliptic boundary value problems in a self-similar ramified domain of with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A generalized Neumann boundary condition is imposed on the fractal boundary. Sobolev spaces on this domain are studied. In particular, extension and trace results are obtained. These results enable the investigation of the variational formulation of the above mentioned boundary value problems. Next, for homogeneous...
This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...
This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...
Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous problem. Uniqueness...
In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence....
We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the...
We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for...
In this article we study discontinuous Galerkin finite element discretizations of linear second-order elliptic partial differential equations with Dirac delta right-hand side. In particular, assuming that the underlying computational mesh is quasi-uniform, we derive an a priori bound on the error measured in terms of the L2-norm. Additionally, we develop residual-based a posteriori error estimators that can be used within an adaptive mesh refinement ...
In this article we study discontinuous Galerkin finite element discretizations of linear second-order elliptic partial differential equations with Dirac delta right-hand side. In particular, assuming that the underlying computational mesh is quasi-uniform, we derive an a priori bound on the error measured in terms of the L2-norm. Additionally, we develop residual-based a posteriori error estimators that can be used within an adaptive mesh refinement ...
The evolution of n–dimensional graphs under a weighted curvature flow is approximated by linear finite elements. We obtain optimal error bounds for the normals and the normal velocities of the surfaces in natural norms. Furthermore we prove a global existence result for the continuous problem and present some examples of computed surfaces.