Page 1 Next

Displaying 1 – 20 of 77

Showing per page

Daubechies wavelets on intervals with application to BVPs

Václav Finěk (2004)

Applications of Mathematics

In this paper, Daubechies wavelets on intervals are investigated. An analytic technique for evaluating various types of integrals containing the scaling functions is proposed; they are compared with classical techniques. Finally, these results are applied to two-point boundary value problems.

Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations

Shu Hua Zhang, Tao Lin, Yan Ping Lin, Ming Rao (2000)

Applications of Mathematics

We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be...

Determination of the initial stress tensor from deformation of underground opening in excavation process

Josef Malík, Alexej Kolcun (2022)

Applications of Mathematics

A method for the detection of the initial stress tensor is proposed. The method is based on measuring distances between pairs of points located on the wall of underground opening in the excavation process. This methods is based on solving twelve auxiliary problems in the theory of elasticity with force boundary conditions, which is done using the least squares method. The optimal location of the pairs of points on the wall of underground openings is studied. The pairs must be located so that the...

Determination of the initial stress tensor from deformation of underground opening -- theoretical background and applications

Malík, Josef, Kolcun, Alexej (2023)

Programs and Algorithms of Numerical Mathematics

In this paper a method for the detection of initial stress tensor is proposed. The method is based on measuring distances between some pairs of points located on the wall of underground opening in the excavation process. This methods is based on the solution of eighteen auxiliary problems in the theory of elasticity with force boundary conditions. The optimal location of the pairs of points on the wall of underground work is studied. The pairs must be located so that the condition number of a certain...

Determination of the Thickness and Composition Profiles for a Film of Binary Mixture on a Solid Substrate

L. Fraštia, U. Thiele, L. M. Pismen (2010)

Mathematical Modelling of Natural Phenomena

We determine the steady-state structures that result from liquid-liquid demixing in a free surface film of binary liquid on a solid substrate. The considered model corresponds to the static limit of the diffuse interface theory describing the phase separation process for a binary liquid (model-H), when supplemented by boundary conditions at the free surface and taking the influence of the solid substrate into account. The resulting variational problem...

Different approaches to interface weights in the BDDC method in 3D

Čertíková, Marta, Šístek, Jakub, Burda, Pavel (2015)

Programs and Algorithms of Numerical Mathematics

In this paper, we discuss the choice of weights in averaging of local (subdomain) solutions on the interface for the BDDC method (Balancing Domain Decomposition by Constraints). We try to find relations among different choices of the interface weights and compare them numerically on model problems of the Poisson equation and linear elasticity in 3D. Problems with jumps in coefficients of material properties are considered and both regular and irregular interfaces between subdomains are tested.

Currently displaying 1 – 20 of 77

Page 1 Next