A 2D finite element procedure for magnetic field analysis taking into account a vector Preisach model.
We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings.
The aim of this work is to present a computationally efficient algorithm to simulate the deformations suffered by a viscoplastic body in a solidification process. This type of problems involves a nonlinearity due to the considered thermo-elastic-viscoplastic law. In our previous papers, this difficulty has been solved by means of a duality method, known as Bermúdez–Moreno algorithm, involving a multiplier which was computed with a fixed point algorithm or a Newton method. In this paper, we will...
The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...
A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving the biharmonic...
In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...
A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, ESAIM: M2AN 33 (1999) 747–770.] The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Calcolo...
The aim of this work is to compare a new uncoupled solver for the cardiac Bidomain model with a usual coupled solver. The Bidomain model describes the bioelectric activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. This system models at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is...
The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities...
Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...