Splitting d'opérateur pour l'équation de transport neutronique en géométrie bidimensionnelle plane
The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end of this work. ...
Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation and absolute stability is deffined in terms of the real parameters and . Sufficient conditions are illustrated for - methods and for combinations of Adams-Moulton and backward differentiation methods.
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.