Previous Page 2

Displaying 21 – 22 of 22

Showing per page

Exponential convergence of hp quadrature for integral operators with Gevrey kernels

Alexey Chernov, Tobias von Petersdorff, Christoph Schwab (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Galerkin discretizations of integral equations in d require the evaluation of integrals I = S ( 1 ) S ( 2 ) g ( x , y ) d y d x where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for x y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules 𝒬 N using N function evaluations of g which achieves exponential convergence |I – 𝒬 N | ≤C exp(–rNγ) with...

Currently displaying 21 – 22 of 22

Previous Page 2