Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind.
We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori...
The paper is devoted to an integral equation algorithm for studying the scattering of plane waves by multilayer diffraction gratings under oblique incidence. The scattering problem is described by a system of Helmholtz equations with piecewise constant coefficients in coupled by special transmission conditions at the interfaces between different layers. Boundary integral methods lead to a system of singular integral equations, containing at least two equations for each interface. To deal with...
In this paper, we deal with a system of integral algebraic equations of the Hessenberg type. Using a new index definition, the existence and uniqueness of a solution to this system are studied. The well-known piecewise continuous collocation methods are used to solve this system numerically, and the convergence properties of the perturbed piecewise continuous collocation methods are investigated to obtain the order of convergence for the given numerical methods. Finally, some numerical experiments...
We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...