Page 1

Displaying 1 – 9 of 9

Showing per page

Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations

Shu Hua Zhang, Tao Lin, Yan Ping Lin, Ming Rao (2000)

Applications of Mathematics

We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be...

Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions

Yousef Edrisi Tabriz, Mehrdad Lakestani (2015)

Kybernetika

In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative ( 𝐃 φ ) and integration matrix ( 𝐏 ) are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed...

Dynamical systems method for solving linear finite-rank operator equations

N. S. Hoang, A. G. Ramm (2009)

Annales Polonici Mathematici

A version of the dynamical systems method (DSM) for solving ill-conditioned linear algebraic systems is studied. An a priori and an a posteriori stopping rules are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic systems.

Dynamical systems method for solving linear ill-posed problems

A. G. Ramm (2009)

Annales Polonici Mathematici

Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning the discrepancy principle for choosing the regularization parameter are obtained.

Currently displaying 1 – 9 of 9

Page 1