Page 1

Displaying 1 – 17 of 17

Showing per page

Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems

Nathalie Bartoli, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new system of integral equations for the exterior 2D time harmonic scattering problem is investigated. This system was first proposed by B. Després in [11]. Two new derivations of this system are given: one from elementary manipulations of classical equations, the other based on a minimization of a quadratic functional. Numerical issues are addressed to investigate the potential of the method.

Introduction to magnetic resonance imaging for mathematicians

Charles L. Epstein (2004)

Annales de l’institut Fourier

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao, Heping Dong, Fuming Ma (2018)

Applications of Mathematics

We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...

Inverted finite elements : a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of n . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.

Inverted finite elements: a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of n . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.

Iteratively solving a kind of Signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Iteratively solving a kind of signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Currently displaying 1 – 17 of 17

Page 1