Numerical solution of a parabolic equation with a weakly singular positive-type memory term.
The Lobatto-Jacobi numerical integration rule can be extended so as to apply to the numerical evaluation of Cauchy type principal value integrals and the numerical solution of singular intergral equations with Cauchy type kernels by reduction to systems of linear equations. To this end, the integrals in such a singular integral equation are replaced by sums, as if they were regular integrals, after the singular integral equation is applied at appropriately selected points of the integration interval....
In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent...
This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.
The time-dependent intensity of a UV-photon source, located inside an interstellar cloud, is determined by formulating and solving an inverse problem for the integro-differential transport equation of photons in a one-dimensional slab. Starting from a discretizazion of the forward problem, an iterative procedure is used to compute the values of the source intensity at increasing values of the time.