Filter factor analysis of an iterative multilevel regularizing method.
This work is focused on a weak solution of a coupled physical task of the microwave wood drying process with stress-strain effects and moisture/temperature dependency. Due to the well known weak solutions for the individual physical fields, the author concerns with the coupled stress-strain relation coupled with the moisture and temperature distributions. For the scale dependency the subgrid upscaling method was used. The solved region is assumed to be divided into discontinuous subregions according...
We deal with modelling of flows in channels or tubes with abrupt changes of the diameter. The goal of this work is to construct the FEM solution in the vicinity of these corners as precise as desired. We present two ways. The first approach makes use of a posteriori error estimates and the adaptive strategy. The second approach is based on the asymptotic behaviour of the exact solution in the vicinity of the corner and on the a priori error estimate of the FEM solution. Then we obtain the solution...
In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results indicate...
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
While most algebra is done by writing text and formulas, diagrams have always been used to present structural information clearly and concisely. Text shells are the de facto interface for computational algebraic number theory, but they are incapable of presenting structural information graphically. We present GiANT, a newly developed graphical interface for working with number fields. GiANT offers interactive diagrams, drag-and-drop functionality, and typeset formulas.
We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
We describe both the classical Lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
The current powerful graphics cards, providing stunning real-time visual effects for computer-based entertainment, have to accommodate powerful hardware components that are able to deliver the photo-realistic simulation to the end-user. Given the vast computing power of the graphics hardware, its producers very often offer a programming interface that makes it possible to use the computational resources of the graphics processors (GPU) to more general purposes. This step gave birth to the so-called...
This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context...
We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...
We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...