Displaying 961 – 980 of 2186

Showing per page

Maximal circular codes versus maximal codes

Yannick Guesnet (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.

Maximal circular codes versus maximal codes

Yannick Guesnet (2010)

RAIRO - Theoretical Informatics and Applications

We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.

Maximum Semi-Matching Problem in Bipartite Graphs

Ján Katrenič, Gabriel Semanišin (2013)

Discussiones Mathematicae Graph Theory

An (f, g)-semi-matching in a bipartite graph G = (U ∪ V,E) is a set of edges M ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges of M, and each vertex v ∈ V is incident with at most g(v) edges of M. In this paper we give an algorithm that for a graph with n vertices and m edges, n ≤ m, constructs a maximum (f, g)-semi-matching in running time O(m ⋅ min [...] ) Using the reduction of [5] our result on maximum (f, g)-semi-matching problem directly implies an algorithm for the optimal...

Measuring the problem-relevant information in input

Stefan Dobrev, Rastislav Královič, Dana Pardubská (2009)

RAIRO - Theoretical Informatics and Applications

We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of the output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and...

Mince zajímají nejen numismatiky

Ľubomíra Dvořáková, Marie Dohnalová (2017)

Pokroky matematiky, fyziky a astronomie

V článku představíme dva druhy úloh týkajících se platby mincemi, které souvisejí s optimalitou počtu použitých mincí. V případě problému platby (říká se také rozměňování — anglicky change making problem), tj. skládání částky z mincí bez možnosti vracení, jsou úlohy spojené s optimalitou dobře prozkoumané. Analogické úlohy zformulujeme pro směnu, tj. skládání částky z mincí s možností vracení. Zde zůstává naopak řada problémů otevřená.

Currently displaying 961 – 980 of 2186