On some Basic Properties of the Kolmogorov Complexity
We consider, for a positive integer , induced subgraphs in which each component has order at most . Such a subgraph is said to be -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for -coloring...
We introduce the notion of a -synchronized sequence, where is an integer larger than 1. Roughly speaking, a sequence of natural numbers is said to be -synchronized if its graph is represented, in base , by a right synchronized rational relation. This is an intermediate notion between -automatic and -regular sequences. Indeed, we show that the class of -automatic sequences is equal to the class of bounded -synchronized sequences and that the class of -synchronized sequences is strictly...
We introduce the notion of a k-synchronized sequence, where k is an integer larger than 1. Roughly speaking, a sequence of natural numbers is said to be k-synchronized if its graph is represented, in base k, by a right synchronized rational relation. This is an intermediate notion between k-automatic and k-regular sequences. Indeed, we show that the class of k-automatic sequences is equal to the class of bounded k-synchronized sequences and that the class of k-synchronized sequences is...
Processes in Place/Transition (P/T) nets are defined inductively by a peculiar numbering of place occurrences. Along with an associative sequential composition called catenation and a neutral process, a monoid of processes is obtained. The power algebra of this monoid contains all process languages with appropriate operations on them. Hence the problems of analysis and synthesis, analogous to those in the formal languages and automata theory, arise. Here, the analysis problem is: for a given P/T...
Processes in Place/Transition (P/T) nets are defined inductively by a peculiar numbering of place occurrences. Along with an associative sequential composition called catenation and a neutral process, a monoid of processes is obtained. The power algebra of this monoid contains all process languages with appropriate operations on them. Hence the problems of analysis and synthesis, analogous to those in the formal languages and automata theory, arise. Here, the analysis problem is: for a given P/T...