Displaying 101 – 120 of 398

Showing per page

Curvature and Flow in Digital Space

Atsushi Imiya (2013)

Actes des rencontres du CIRM

We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.

Cutwidth of iterated caterpillars

Lan Lin, Yixun Lin (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The cutwidth is an important graph-invariant in circuit layout designs. The cutwidth of a graph G is the minimum value of the maximum number of overlap edges when G is embedded into a line. A caterpillar is a tree which yields a path when all its leaves are removed. An iterated caterpillar is a tree which yields a caterpillar when all its leaves are removed. In this paper we present an exact formula for the cutwidth of the iterated caterpillars.

Cutwidth of the de Bruijn graph

André Raspaud, Ondrej Sýkora, Imrich Vrt'o (1995)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Cycle and path embedding on 5-ary N-cubes

Tsong-Jie Lin, Sun-Yuan Hsieh, Hui-Ling Huang (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study two topological properties of the 5-ary n -cube Q n 5 . Given two arbitrary distinct nodes x and y in Q n 5 , we prove that there exists an x - y path of every length ranging from 2 n to 5 n - 1 , where n 2 . Based on this result, we prove that Q n 5 is 5-edge-pancyclic by showing that every edge in Q n 5 lies on a cycle of every length ranging from 5 to 5 n .

Cycle and Path Embedding on 5-ary N-cubes

Tsong-Jie Lin, Sun-Yuan Hsieh, Hui-Ling Huang (2008)

RAIRO - Theoretical Informatics and Applications

We study two topological properties of the 5-ary n-cube Q n 5 . Given two arbitrary distinct nodes x and y in Q n 5 , we prove that there exists an x-y path of every length ranging from 2n to 5n - 1, where n ≥ 2. Based on this result, we prove that Q n 5 is 5-edge-pancyclic by showing that every edge in Q n 5 lies on a cycle of every length ranging from 5 to 5n.

Directed forests with application to algorithms related to Markov chains

Piotr Pokarowski (1999)

Applicationes Mathematicae

This paper is devoted to computational problems related to Markov chains (MC) on a finite state space. We present formulas and bounds for characteristics of MCs using directed forest expansions given by the Matrix Tree Theorem. These results are applied to analysis of direct methods for solving systems of linear equations, aggregation algorithms for nearly completely decomposable MCs and the Markov chain Monte Carlo procedures.

Currently displaying 101 – 120 of 398