Reconnaissabilité des substitutions et complexité des suites automatiques
The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.
The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.
Soient et un sous-système. est une représentation en base d’une fonction du tore si pour tout point du tore, ses développements en base sont liés par le couplage aux développements en base de . On prouve que si est représentable en base alors , où . Réciproquement, toutes les fonctions de ce type sont représentables en base par un transducteur. On montre finalement que les fonctions du tore qui peuvent être représentées par automate cellulaire sont exclusivement les multiplications...
In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-calledtime-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.
Considering each occurrence of a word w in a recurrent infinite word, we define the set of return words of w to be the set of all distinct words beginning with an occurrence of w and ending exactly just before the next occurrence of w in the infinite word. We give a simpler proof of the recent result (of the second author) that an infinite word is Sturmian if and only if each of its factors has exactly two return words in it. Then, considering episturmian infinite words, which are a natural generalization...
This paper analyzes the proof-theoretic strength of an infinite version of several theorems from algorithmic graph theory. In particular, theorems on reachability matrices, shortest path matrices, topological sorting, and minimal spanning trees are considered.
We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2-theories. We show that this presentation is equivalent to the well-accepted operational definition proposed by Barendregt et al. – but for the case of circular redexes , for which we propose (and justify formally) a different treatment. The categorical framework allows us to model in a concise way also automatic garbage collection and rules for sharing/unsharing and...
Six kinds of both of primitivity and periodicity of words, introduced by Ito and Lischke [M. Ito and G. Lischke, Math. Log. Quart. 53 (2007) 91–106; Corrigendum in Math. Log. Quart. 53 (2007) 642–643], give rise to defining six kinds of roots of a nonempty word. For 1 ≤ k ≤ 6, a k-root word is a word which has exactly k different roots, and a k-cluster is a set of k-root words u where the roots of u fulfil a given prefix relationship. We show that out of the 89 different clusters that can be considered...