The search session has expired. Please query the service again.
We study a variational problem which was introduced by Hannon,
Marcus and Mizel [ESAIM: COCV9 (2003) 145–149] to
describe step-terraces on surfaces of so-called “unorthodox” crystals.
We show that there is no nondegenerate intervals on which the absolute
value of a minimizer is identically.
This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.
In this paper we study bounds for the off-diagonal elements of the homogenized tensor for the stationary heat conduction problem. We also state that these bounds are sharp by proving a formula for the homogenized tensor in the case of laminate structures.
Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...
The Mori-Tanaka effective stiffness tensor is shown to be asymmetric in general. This tensor is proven to be symmetric for composites with isotropic inclusions, or with spherical reinforcements. Symmetry is also proven for the case of unidirectional fibers, of any shape and material. The Mori-Tanaka theory is shown to yield physically unacceptable predictions at the high concentration limit.
A mechanical one-dimensional model which describes the dynamical behaviour of laminated curved beams is formulated. It is assumed that each lamina can be regarded as a Timoshenko's beam and that the rotations of the cross sections can differ from one lamina to another. The relative displacements at the interfaces of adjacent laminae are assumed to be zero. Consequently the model includes a shear deformability, due to the warping of the cross beam section consequent to the variability of the laminae...
In an earlier study [16] the nonlinear behaviour of unimodular laminated plates was studied. This paper, following the previous study, concerns a large deflection analysis of moderately thick rectangular plates having arbitrary boundary conditions and finite thickness shear moduli. The plates are manufactured in bimodular materials and constructed in a cross-ply fashion or in a single layer with arbitrary fibre direction angle. Numerical results are obtained by a finite element technique in which...
A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.
Currently displaying 1 –
13 of
13