Loading [MathJax]/extensions/MathZoom.js
Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by a rigid plate...
This paper presents a derivation of the Rayleigh- Betti reciprocity relation for layered curved composite beams with interlayer slip. The principle of minimum of potential energy is also formulated for two-layer curved composite beams and its applications are illustrated by numerical examples. The solution of the presented problems are obtained by the Ritz method. The applications of the Rayleigh-Betti reciprocity relation proven are illustrated by some examples.
MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.
Currently displaying 1 –
4 of
4