Page 1

Displaying 1 – 2 of 2

Showing per page

The energy method for elastic problems with non-homogeneous boundary conditions

Ramon Quintanilla (2002)

International Journal of Applied Mathematics and Computer Science

In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems in a cylinder. A section...

Theoretical analysis of discrete contact problems with Coulomb friction

Tomáš Ligurský (2012)

Applications of Mathematics

A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction depending on the spatial variable is analysed. It is shown that a solution exists for any and is globally unique if is sufficiently small. The Lipschitz continuity of this unique solution as a function of as well as a function of the load vector f is obtained. Furthermore, local uniqueness of solutions for arbitrary > 0 is studied. The question of existence of locally Lipschitz-continuous...

Currently displaying 1 – 2 of 2

Page 1