The minimal perimeter for confined deformable bubbles of equal area.
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...
Let where are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the -well problem with surface energy. Let , be a convex polytopal region. Defineand let denote the subspace of functions in that satisfy the affine boundary condition on (in the sense of trace), where . We consider the scaling (with respect to ) ofSecondly the finite element approximation to the -well problem without surface...
Let where are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N-well problem with surface energy. Let , be a convex polytopal region. Define and let AF denote the subspace of functions in that satisfy the affine boundary condition Du=F on (in the sense of trace), where . We consider the scaling (with respect to ϵ) of Secondly the finite element approximation to the N-well problem without...
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.