Loading [MathJax]/extensions/MathZoom.js
The paper deals with the problem of finding a curve, going through the interior of the domain , accross which the flux , where is the solution of a mixed elliptic boundary value problem solved in , attains its maximum.
We consider singular perturbation variational problems depending on a small parameter . The right hand side is such that the energy does not remain bounded as . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...
We consider singular perturbation variational problems
depending on a small parameter ε. The right hand side is such
that the energy
does not remain bounded as ε → 0. The asymptotic
behavior involves internal
layers where most of the energy concentrates. Three examples are addressed,
with limits elliptic, parabolic and hyperbolic respectively, whereas the
problems with ε > 0 are elliptic. In the parabolic and hyperbolic
cases, the
propagation of singularities appear as an integral property after...
Currently displaying 1 –
3 of
3