Previous Page 3

Displaying 41 – 48 of 48

Showing per page

One-dimensional model describing the non-linear viscoelastic response of materials

Tomáš Bárta (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity.

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek (1989)

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Optimal design problems for a dynamic viscoelastic plate. I. Short memory material

Igor Bock (1995)

Applications of Mathematics

We deal with an optimal control problem with respect to a variable thickness for a dynamic viscoelastic plate with velocity constraints. The state problem has the form of a pseudohyperbolic variational inequality. The existence and uniqueness theorem for the state problem and the existence of an optimal thickness function are proved.

Oscillations of a nonlinearly damped extensible beam

Eduard Feireisl, Leopold Herrmann (1992)

Applications of Mathematics

It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.

Currently displaying 41 – 48 of 48

Previous Page 3