Stability of saddle point problems with penalty
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter and study its asymptotic behavior for large, as . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter . In order for this to be true the damping mechanism has to have the appropriate scale with respect to . In the limit as we obtain damped Berger–Timoshenko beam models...
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε → 0. Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε. In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko...
Si studia il problema di contatto tra due piastre sottili linearmente elastiche, incastrate al bordo, poste inizialmente a distanza e trasversalmente caricate. Si fa l'ipotesi che il contatto tra le due piastre, a deformazione avvenuta, sia privo di attrito. Il problema dell'equilibrio elastico è formulato per via variazionale in termini di lavori virtuali o, equivalentemente, di minimo del funzionale dell'energia. Il quadro analitico di riferimento è quello della teoria delle disequazioni variazionali...
We define, for the trace of solution of vibrating plates equation, norms with initial conditions in no regular spaces. Then, we give the corresponding exact controllability results.