Nonlinear analysis of flexible beams undergoing large rotations via symbolic computations.
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...
In this paper we present several nonlinear models of suspension bridges; most of them have been introduced by Lazer and McKenna. We discuss some results which were obtained by the authors and other mathematicians for the boundary value problems and initial boundary value problems. Our intention is to point out the character of these results and to show which mathematical methods were used to prove them instead of giving precise proofs and statements.
This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.
We consider the limit behaviour of elastic shells when the relative thickness tends to zero. We address the case when the middle surface has principal curvatures of opposite signs and the boundary conditions ensure the geometrical rigidity. The limit problem is hyperbolic, but enjoys peculiarities which imply singularities of unusual intensity. We study these singularities and their propagation for several cases of loading, giving a somewhat complete description of the solution.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
Two mathematical models of railway track oscillations are compared on the basis of numerical experiments.
In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.