Previous Page 3

Displaying 41 – 50 of 50

Showing per page

Existence of a solution for a nonlinearly elastic plane membrane “under tension”

Daniel Coutand (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox et al. [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of 3 , is equivalent to finding the critical points...

Exponential stability of a flexible structure with history and thermal effect

Roberto Díaz, Jaime Muñoz, Carlos Martínez, Octavio Vera (2020)

Applications of Mathematics

In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Currently displaying 41 – 50 of 50

Previous Page 3