Displaying 21 – 40 of 65

Showing per page

Implicit constitutive solution scheme for Mohr-Coulomb plasticity

Sysala, Stanislav, Čermák, Martin (2017)

Programs and Algorithms of Numerical Mathematics

This contribution summarizes an implicit constitutive solution scheme of the elastoplastic problem containing the Mohr-Coulomb yield criterion, a nonassociative flow rule, and a nonlinear isotropic hardening. The presented scheme builds upon the subdifferential formulation of the flow rule leading to several improvements. Mainly, it is possible to detect a position of the unknown stress tensor on the Mohr-Coulomb pyramid without blind guesswork. Further, a simplified construction of the consistent...

Inverse modelling of image-based patient-specific blood vessels: zero-pressure geometry and in vivo stress incorporation

Joris Bols, Joris Degroote, Bram Trachet, Benedict Verhegghe, Patrick Segers, Jan Vierendeels (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In vivo visualization of cardiovascular structures is possible using medical images. However, one has to realize that the resulting 3D geometries correspond to in vivo conditions. This entails an internal stress state to be present in the in vivo measured geometry of e.g. a blood vessel due to the presence of the blood pressure. In order to correct for this in vivo stress, this paper presents an inverse method to restore the original zero-pressure geometry of a structure, and to recover the in vivo...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h , the L surface concentrations c i s in lithology i of the sediments at the top...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h, the L surface concentrations c i s in lithology i of the sediments at the...

Mathematical modelling of rock bolt reinforcement

Runt, David, Novotný, Jaroslav, Pruška, Jan (2017)

Programs and Algorithms of Numerical Mathematics

Rock bolts as construction elements are often used in underground civil engineering projects. This work deals with their numerical modelling. Aydan special finite elements for the description of rock bolts and hexahedral quadratic finite elements for the description of rock massif were used. A code for the computation of stiffness matrices and right hand sides of these elements was developed. The code was tested on several simple test examples and their results were compared with the analytical...

Mathematical modelling of rock bolt systems. I

Josef Malík (1998)

Applications of Mathematics

The main goal of the paper is to give a variational formulation of the behaviour of bolt systems in rock mass. The problem arises in geomechanics where bolt systems are applied to reinforce underground openings by inserting steel bars or cables. After giving a variational formulation, we prove the existence and uniqueness and some other properties.

Mathematical modelling of rock bolt systems. II

Josef Malík (2000)

Applications of Mathematics

The main goal of the paper is to describe a reinforcement consisting of fully grouted bolts, which is applied to stabilizing underground openings and tunnels. After a variational formulation is given, the existence and uniqueness is proved. Some asymptotic results that make it possible to replace the real system with a continuous one more suitable for discretization are presented. Some other types of reinforcements and properties are studied.

Mechanical aspects of growth in soft tissues

D. Ambrosi, F. Guana (2004)

Bollettino dell'Unione Matematica Italiana

In the last years many efforts have been devoted to understand the stressmodulated growth of soft tissues. Recent theoretical achievements suggest that a component of the stress-growth coupling is tissue-independent and reads as an Eshelby-like tensor. In this paper we investigate the mathematical properties and the qualitative behavior predicted by equations that specialize that model under few simple assumptions. Equations strictly deduced from a dissipation principle are compared with heuristic...

Modelled behaviour of granular material during loading and unloading

Krejčí, Pavel, Siváková, Lenka, Chleboun, Jan (2019)

Programs and Algorithms of Numerical Mathematics

The main aim of this paper is to analyze numerically the model behaviour of a granular material during loading and unloading. The model was originally proposed by D. Kolymbas and afterward modified by E. Bauer. For our purposes the constitutive equation was transformed into a rate independent form by introducing a dimensionless time parameter. By this transformation we were able to derive explicit formulas for the strain-stress trajectories during loading-unloading cycles and compare the results...

New unilateral problems in stratigraphy

Stanislav N. Antontsev, Gérard Gagneux, Robert Luce, Guy Vallet (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type 0 t u - d i v { H ( t u + E ) u } , where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation...

Non linear phenomena in glaciology: ice-surging and streaming.

Emanuele Schiavi, Ana Isabel Muñoz, Ultano Kindelán (2002)

RACSAM

En estas notas presentamos algunos modelos físicos que han sido propuestos recientemente para tratar el problema de los movimientos repentinos y casi periódicos del hielo, así como la aparición de corrientes de hielo rápidas en los grandes mantos glaciares que se deslizan sobre lechos blandos y deformables. Estos fenómenos están relacionados con la transición de un régimen de flujo lento a uno rápido y pueden aparecer debido a una modificación del sistema de drenaje del glaciar. Los fenómenos en...

On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case

Jiří Nedoma (1987)

Aplikace matematiky

The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary Γ α of a polygonal domain G R 2 is given. The rate of convergence is proved if the exact solution is sufficiently regular.

Propagation of elastic waves in DNA.

Mukherjee, Sunil, Sarkar, Saumyendra Nath, Raychaudhuri, Probhas, Mazumdar, Sunil Kumar (1983)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 21 – 40 of 65