The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The analysis of dynamic contacts/impacts of several deformable bodies belongs to both theoretically and computationally complicated problems, because of the presence of unpleasant nonlinearities and of the need of effective contact detection. This paper sketches how such difficulties can be overcome, at least for a model problem with several elastic bodies, using i) the explicit time-discretization scheme and ii) the finite element technique adopted to contact evaluations together with iii) the...
Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained from...
In the paper the Signorini problem without friction in the linear thermoelasticity for the steady-state case is investigated. The problem discussed is the model geodynamical problem, physical analysis of which is based on the plate tectonic hypothesis and the theory of thermoelasticity.
The existence and unicity of the solution of the Signorini problem without friction for the steady-state case in the linear thermoelasticity as well as its finite element approximation is proved. It is known that...
In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.
We are interested in the finite element approximation of Coulomb's frictional unilateral contact problem in linear elasticity. Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and uniqueness when the friction coefficient is less than Cε^{2}|log(h)|^{-1}, where h and ε denote the discretization and regularization parameters, respectively. This bound converging very slowly towards 0 when h decreases (in comparison with the already known...
The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome...
In questo lavoro viene studiato il comportamento dinamico di una piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presentano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo delle equazioni del moto. Si istituiscono infine dei confronti con risultati...
The following possibilities of reduction of dimension in the computational analysis of strain and stresses transferred to the subsoil massive are available: i) coming from the effective subsoil model by Kolář & Němec (1989), based on the assumptions of the Pasternak's model (1954), where the pair of material parameters of a surface model is evaluated from the energy equivalence, ii) reducing a large sparse matrix of soil massive stiffness to a smaller one, using Schur's complement technique....
The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary of a polygonal domain is given. The rate of convergence is proved if the exact solution is sufficiently regular.
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...
A short survey of available existence results for dynamic contact problems including heat generation and heat transfer is presented.
A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.
The contact between two membranes can be described by a system of variational
inequalities, where the unknowns are the displacements of the membranes and the
action of a membrane on the other one. We first perform the analysis of this
system. We then propose a discretization, where the displacements are
approximated by standard finite elements and the action by a
local postprocessing. Such a discretization admits an equivalent mixed
reformulation. We prove the well-posedness of the discrete problem...
Currently displaying 1 –
20 of
20