Page 1

Displaying 1 – 5 of 5

Showing per page

Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity

Pavel Krejčí, Jürgen Sprekels (1998)

Applications of Mathematics

In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ contains, in addition to elastic, viscous and thermic contributions, a plastic component σ p of the form σ p ( x , t ) = 𝒫 [ ε , θ ( x , t ) ] ( x , t ) . Here ε and θ are the fields of strain and absolute temperature, respectively, and { 𝒫 [ · , θ ] } θ > 0 denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum...

The regularisation of the N -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N -well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let A F denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition D u = F on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ϵ ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite element approximation to the N -well problem without surface...

The regularisation of the N-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N-well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let AF denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition Du=F on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ϵ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite element approximation to the N-well problem without...

Transizioni di fase ed isteresi

Augusto Visintin (2000)

Bollettino dell'Unione Matematica Italiana

L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano...

Currently displaying 1 – 5 of 5

Page 1