The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a mathematical description of wetting and drying stone pores, where the resulting mathematical model contains hysteresis operators. We describe these hysteresis operators and present a numerical solution for a simplified problem.
We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form degree angles, and expands homothetically under curve shortening flow. We also prove uniqueness of these networks.
We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is -negligible and is empty...
We introduce an intrinsic notion of perimeter for subsets of
a general Minkowski space (i.e. a finite dimensional Banach space in which the
norm is not required to be even).
We prove that this notion of perimeter is equivalent to
the usual definition of surface energy for crystals and
we study the regularity properties of
the minimizers and the quasi-minimizers of perimeter.
In the two-dimensional case we obtain optimal regularity results:
apart from a singular set (which is -negligible and is...
We give an analysis of the stability and uniqueness of the simply
laminated microstructure for all three tetragonal to monoclinic
martensitic transformations. The energy density for tetragonal to
monoclinic transformations has four rotationally invariant wells since
the transformation has four variants. One of these tetragonal to
monoclinic martensitic transformations corresponds to the shearing of
the rectangular side, one corresponds to the shearing of the square
base, and one corresponds to...
We prove the periodicity of all H2-local minimizers with low energy
for a one-dimensional higher order variational problem.
The results extend and complement an earlier work of Stefan Müller
which concerns the structure of global minimizer.
The energy functional studied in this work is motivated by the
investigation of coherent solid phase transformations and the
competition between the
effects from regularization and formation of small scale structures.
With a special choice of a bilinear double...
The Cauchy–Born rule provides a crucial link between continuum theories of elasticity and the atomistic nature of matter. In its strongest form it says that application of affine displacement
boundary conditions to a monatomic crystal will lead to an affine deformation of the whole crystal lattice. We give a general condition in arbitrary dimensions which ensures the validity of the Cauchy–Born rule for boundary deformations which are close to rigid motions.
This generalizes results of Friesecke...
Currently displaying 1 –
9 of
9