Page 1

Displaying 1 – 9 of 9

Showing per page

Save our stones -- hysteresis phenomenon in porous media

Vlasák, Miloslav, Lamač, Jan (2021)

Programs and Algorithms of Numerical Mathematics

We present a mathematical description of wetting and drying stone pores, where the resulting mathematical model contains hysteresis operators. We describe these hysteresis operators and present a numerical solution for a simplified problem.

Self-similarly expanding networks to curve shortening flow

Oliver C. Schnürer, Felix Schulze (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form 120 degree angles, and expands homothetically under curve shortening flow. We also prove uniqueness of these networks.

Some regularity results for minimal crystals

L. Ambrosio, M. Novaga, E. Paolini (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space ( i . e . a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is 1 -negligible and is empty...

Some regularity results for minimal crystals

L. Ambrosio, M. Novaga, E. Paolini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space (i.e. a finite dimensional Banach space in which the norm is not required to be even). We prove that this notion of perimeter is equivalent to the usual definition of surface energy for crystals and we study the regularity properties of the minimizers and the quasi-minimizers of perimeter. In the two-dimensional case we obtain optimal regularity results: apart from a singular set (which is 1 -negligible and is...

Stability of microstructure for tetragonal to monoclinic martensitic transformations

Pavel Belik, Mitchell Luskin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We give an analysis of the stability and uniqueness of the simply laminated microstructure for all three tetragonal to monoclinic martensitic transformations. The energy density for tetragonal to monoclinic transformations has four rotationally invariant wells since the transformation has four variants. One of these tetragonal to monoclinic martensitic transformations corresponds to the shearing of the rectangular side, one corresponds to the shearing of the square base, and one corresponds to...

Structure of stable solutions of a one-dimensional variational problem

Nung Kwan Yip (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double...

Sufficient conditions for the validity of the Cauchy-Born rule close to SO ( n )

Sergio Conti, Georg Dolzmann, Bernd Kirchheim, Stefan Müller (2006)

Journal of the European Mathematical Society

The Cauchy–Born rule provides a crucial link between continuum theories of elasticity and the atomistic nature of matter. In its strongest form it says that application of affine displacement boundary conditions to a monatomic crystal will lead to an affine deformation of the whole crystal lattice. We give a general condition in arbitrary dimensions which ensures the validity of the Cauchy–Born rule for boundary deformations which are close to rigid motions. This generalizes results of Friesecke...

Currently displaying 1 – 9 of 9

Page 1