Loading [MathJax]/extensions/MathZoom.js
We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693–702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.
In this paper, a new hybrid simulated annealing algorithm for constrained global
optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that
uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the
basic simulated annealing algorithm (SA) that gives the region containing the global
solution of an objective function. In addition, Simultaneous Perturbation Stochastic
Approximation (SPSA)...
The concept of reduced plastic dissipation is introduced for a perfectly plastic rate-independent material not obeyng the associated normality rule and characterized by a strictly convex plastic potential function. A maximum principle is provided and shown to play the role of variational statement for the nonassociative constitutive equations. The Kuhn-Tucker conditions of this principle describe the actual material behaviour as that of a (fictitious) composite material with two plastic constituents,...
In the context of the linear, dynamic problem for elastic bodies with voids, a minimum principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing functional, the minimum character achieved in the Laplace-transform domain is preserved when going back to the original time domain. Initial-boundary conditions of quite general type are considered.
Shape optimization of mechanical devices is investigated in the context of large, geometrically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear elastic optimization problem differs significantly from classical shape optimization in linearized elasticity. Indeed, there exist different definitions for the compliance: the change in potential energy of the...
Shape optimization of mechanical devices is investigated in the context of large, geometrically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear elastic optimization problem differs significantly from classical shape optimization in linearized elasticity. Indeed, there exist different definitions for the compliance: the change in potential energy of the...
Shape optimization of mechanical devices is investigated in the context of large, geometrically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear elastic optimization problem differs significantly from classical shape optimization in linearized elasticity. Indeed, there exist different definitions for the compliance: the change in potential energy of the...
The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...
The tetrahedral stress element is introduced and two different types of a finite piecewise linear approximation of the dual elasticity problem are investigated on a polyhedral domain. Fot both types a priori error estimates in -norm and in -norm are established, provided the solution is smooth enough. These estimates are based on the fact that for any polyhedron there exists a strongly regular family of decomprositions into tetrahedra, which is proved in the paper, too.
The subject of topology optimization has undergone an enormous practical development since the appearance of the paper by Bendso e and Kikuchi (1988), where some ideas from homogenization theory were put into practice. Since then, several engineering applications as well as different approaches have been developed successfully. However, it is difficult to find in the literature some analytical examples that might be used as a test in order to assess the validity of the solutions obtained with different...
Currently displaying 1 –
20 of
166