Displaying 21 – 40 of 166

Showing per page

Approximation of a nonlinear thermoelastic problem with a moving boundary via a fixed-domain method

Jindřich Nečas, Tomáš Roubíček (1990)

Aplikace matematiky

The thermoelastic stresses created in a solid phase domain in the course of solidification of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. This problem, obtained from a real situation by many simplifications, contains a moving boundary between the solid and the liquid phase domains. To make the usage of standard numerical packages possible, we propose here a fixed-domain approximation by means of including the liquid phase domain into the problem (in...

Asymptotics of an optimal compliance-location problem

Giuseppe Buttazzo, Filippo Santambrogio, Nicolas Varchon (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.

Betti's reciprocal theorem for Cosserat elastic shells

Franco Pastrone (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion for the existence of a stored-energy function for a Cosserat elastic shell.

Bilevel Approach of a Decomposed Topology Optimization Problem

A. Makrizi, B. Radi (2010)

Mathematical Modelling of Natural Phenomena

In topology optimization problems, we are often forced to deal with large-scale numerical problems, so that the domain decomposition method occurs naturally. Consider a typical topology optimization problem, the minimum compliance problem of a linear isotropic elastic continuum structure, in which the constraints are the partial differential equations of linear elasticity. We subdivide the partial differential equations into two subproblems posed...

Contact shape optimization based on the reciprocal variational formulation

Jaroslav Haslinger (1999)

Applications of Mathematics

The paper deals with a class of optimal shape design problems for elastic bodies unilaterally supported by a rigid foundation. Cost and constraint functionals defining the problem depend on contact stresses, i.e. their control is of primal interest. To this end, the so-called reciprocal variational formulation of contact problems making it possible to approximate directly the contact stresses is used. The existence and approximation results are established. The sensitivity analysis is carried out....

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan Hlaváček, Ján Lovíšek (2001)

Applicationes Mathematicae

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions is employed....

Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems

Ivan Hlaváček, Ján Lovíšek (2002)

Applicationes Mathematicae

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.

Control structure in optimization problems of bar systems

Leszek Mikulski (2004)

International Journal of Applied Mathematics and Computer Science

Optimal design problems in mechanics can be mathematically formulated as optimal control tasks. The minimum principle is employed in solving such problems. This principle allows us to write down optimal design problems as Multipoint Boundary Value Problems (MPBVPs). The dimension of MPBVPs is an essential restriction that decides on numerical difficulties. Optimal control theory does not give much information about the control structure, i.e., about the sequence of the forms of the right-hand sides...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the pressure and...

Design-dependent loads in topology optimization

Blaise Bourdin, Antonin Chambolle (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure...

Dewetting dynamics of anisotropic particles: A level set numerical approach

Siddharth Gavhale, Karel Švadlenka (2022)

Applications of Mathematics

We extend thresholding methods for numerical realization of mean curvature flow on obstacles to the anisotropic setting where interfacial energy depends on the orientation of the interface. This type of schemes treats the interface implicitly, which supports natural implementation of topology changes, such as merging and splitting, and makes the approach attractive for applications in material science. The main tool in the new scheme are convolution kernels developed in previous studies that approximate...

Currently displaying 21 – 40 of 166