Page 1

Displaying 1 – 9 of 9

Showing per page

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2003)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the...

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates...

Homogenization of a singular random one-dimensional PDE

Bogdan Iftimie, Étienne Pardoux, Andrey Piatnitski (2008)

Annales de l'I.H.P. Probabilités et statistiques

This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.

Homogenization of evolution problems for a composite medium with very small and heavy inclusions

Michel Bellieud (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div ( a ε u ε ) = f in Ω × ( 0 , T ) + boundary conditions , n { 1 , 2 } , when the coefficients ρ ε , a ε (defined in Ø ) take possibly high values on a ε -periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.

Homogenization of evolution problems for a composite medium with very small and heavy inclusions

Michel Bellieud (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div ( a ε u ε ) = f in Ø × ( 0 , T ) + boundary conditions , n { 1 , 2 } , when the coefficients ρ ε , a ε (defined in Ω) take possibly high values on a ε-periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.

Homogenization of periodic non self-adjoint problems with large drift and potential

Grégoire Allaire, Rafael Orive (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the homogenization of both the parabolic and eigenvalue problems for a singularly perturbed convection-diffusion equation in a periodic medium. All coefficients of the equation may vary both on the macroscopic scale and on the periodic microscopic scale. Denoting by ε the period, the potential or zero-order term is scaled as ε - 2 and the drift or first-order term is scaled as ε - 1 . Under a structural hypothesis on the first cell eigenvalue, which is assumed to admit a unique minimum in the...

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Currently displaying 1 – 9 of 9

Page 1