The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the...
The aim of this paper is to study a class of domains whose
geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains
with rapidly pulsing (in time) periodic
perforations, with a homogeneous Neumann condition on the boundary of the holes.
We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero.
Since standard conservation laws do not
hold in this model, a first difficulty is to get
a priori estimates...
This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
We study the homogenization of parabolic or hyperbolic equations likewhen the coefficients , (defined in ) take possibly high values on a -periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.
We study the homogenization of parabolic or hyperbolic equations like
when the coefficients , (defined in Ω) take possibly high values
on a ε-periodic set of grain-like inclusions of vanishing measure.
Memory effects arise in the limit problem.
We consider the homogenization of both the parabolic and eigenvalue problems for a singularly perturbed
convection-diffusion equation in a periodic medium. All coefficients of the equation may vary both on the
macroscopic scale and on the periodic microscopic scale. Denoting by ε the period, the potential or zero-order
term is scaled as and the drift or first-order term is scaled as . Under a structural
hypothesis on the first cell eigenvalue, which is assumed to admit a unique minimum in the...
The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.
The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...
Currently displaying 1 –
9 of
9