Page 1

Displaying 1 – 2 of 2

Showing per page

Derivation and mathematical analysis of a nonlocal model for large amplitude internal waves

David Lannes (2008/2009)

Séminaire Équations aux dérivées partielles

This note is devoted to the study of a bi-fluid generalization of the nonlinear shallow-water equations. It describes the evolution of the interface between two fluids of different densities. In the case of a two-dimensional interface, this systems contains unexpected nonlocal terms (that are of course not present in the usual one-fluid shallow water equations). We show here how to derive this systems from the two-fluid Euler equations and then show that it is locally well-posed.

Dissipative Euler flows and Onsager's conjecture

Camillo De Lellis, László Székelyhidi (2014)

Journal of the European Mathematical Society

Building upon the techniques introduced in [15], for any θ < 1 10 we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent θ . A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent θ < 1 3 . Our theorem is the first result in this direction.

Currently displaying 1 – 2 of 2

Page 1