Page 1

Displaying 1 – 9 of 9

Showing per page

On a model system for the oblique interaction of internal gravity waves

Jean-Claude Saut, Nikolay Tzvetkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We give local and global well-posedness results for a system of two Kadomtsev-Petviashvili (KP) equations derived by R. Grimshaw and Y. Zhu to model the oblique interaction of weakly nonlinear, two dimensional, long internal waves in shallow fluids. We also prove a smoothing effect for the amplitudes of the interacting waves. We use the Fourier transform restriction norms introduced by J. Bourgain and the Strichartz estimates for the linear KP group. Finally we extend the result of [3] for lower...

On power series solutions for the Euler equation, and the Behr–Nečas–Wu initial datum

Carlo Morosi, Mario Pernici, Livio Pizzocchero (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the Euler equation for an incompressible fluid on a three dimensional torus, and the construction of its solution as a power series in time. We point out some general facts on this subject, from convergence issues for the power series to the role of symmetries of the initial datum. We then turn the attention to a paper by Behr, Nečas and Wu, ESAIM: M2AN 35 (2001) 229–238; here, the authors chose a very simple Fourier polynomial as an initial datum for the Euler equation and analyzed...

On the conditional regularity of the Navier-Stokes and related equations

Dongho Chae (2006)

Banach Center Publications

We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.

On the global existence for the Muskat problem

Peter Constantin, Diego Córdoba, Francisco Gancedo, Robert M. Strain (2013)

Journal of the European Mathematical Society

The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an L 2 ( ) maximum principle, in the form of a new “log” conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance f 1 1 / 5 . Previous results of this...

Currently displaying 1 – 9 of 9

Page 1