The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.
We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data , and for and any . The initial regularity of the micro-rotational velocity is weaker than velocity of the fluid .
In this note, we give an overview of the authors’ paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kučera [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of...
Currently displaying 1 –
3 of
3