Page 1

Displaying 1 – 5 of 5

Showing per page

A continuity property for the inverse of Mañé's projection

Zdeněk Skalák (1998)

Applications of Mathematics

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F ( X ) , and P 0 an orthogonal projection in H of rank greater than or equal to 2 d F ( X ) + 1 . For every δ > 0 , there exists an orthogonal projection P in H of the same rank as P 0 , which is injective when restricted to X and such that P - P 0 < δ . This result follows from Mañé’s paper. Thus the inverse ( P | X ) - 1 of the restricted mapping P | X X P X is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...

A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence

Cédric Galusinski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to establish, from a mathematical point of view, the limit α → +∞ in the system i t E + ( . E ) - α 2 × × E = - | E | 2 σ E , where E : 3 3 . This corresponds to an approximation which is made in the context of Langmuir turbulence in plasma Physics. The L2-subcritical σ (that is σ ≤ 2/3) and the H1-subcritical σ (that is σ ≤ 2) are studied. In the physical case σ = 1, the limit is then studied for the H 1 ( 3 ) norm.

Currently displaying 1 – 5 of 5

Page 1