A numerical method for unsteady flows
A high resolution finite volume method for the computation of unsteady solutions of the Euler equations in two space dimensions is presented and validated. The scheme is of Godunov-type. The first order part of the flux function uses the approximate Riemann problem solver of Pandolfi and here a new derivation of this solver is presented. This construction paves the way to understand the conditions under which the scheme satisfies an entropy condition. The extension to higher order is done by applying...