The search session has expired. Please query the service again.
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize
the shallow water problem in height-flow rate formulation used to
solve the flow in lakes and perfectly well-mixed sea. We establish
a convergence result for the time-discretized problem when the
momentum equation and the continuity equation are solved with the
Galerkin method, without adding a penalization term in the
continuity equation as it is made in Lions...
We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid...
The one-dimensional steady-state convection-diffusion problem for the unknown temperature of a medium entering the interval with the temperature and flowing with a positive velocity is studied. The medium is being heated with an intensity corresponding to for a constant . We are looking for a velocity with a given average such that the outflow temperature is maximal and discuss the influence of the boundary condition at the point on the “maximizing” function .
We consider a finite element discretization by
the Taylor–Hood element for the stationary
Stokes and Navier–Stokes
equations with slip boundary condition. The slip boundary condition
is enforced pointwise for nodal values of the velocity in
boundary nodes. We prove optimal error estimates in the
H1 and L2 norms for the velocity and pressure respectively.
We study a 2D model of the orientation distribution of fibres in a paper machine headbox. The goal is to control the orientation of fibres at the outlet by shape variations. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Existence of solutions both to the state and the optimization problem is analyzed and sensitivity analysis is performed. Further, discretization is done and a numerical example...
We consider the analysis and
numerical solution of a forward-backward boundary value problem.
We provide some motivation, prove existence and uniqueness in a function
class especially geared to the problem at hand, provide various energy
estimates, prove a priori error estimates for the Galerkin method,
and show the results of some numerical computations.
Currently displaying 21 –
29 of
29