Displaying 81 – 100 of 102

Showing per page

Special finite-difference approximations of flow equations in terms of stream function, vorticity and velocity components for viscous incompressible liquid in curvilinear orthogonal coordinates

Harijs Kalis (1993)

Commentationes Mathematicae Universitatis Carolinae

The Navier-Stokes equations written in general orthogonal curvilinear coordinates are reformulated with the use of the stream function, vorticity and velocity components. The resulting system id discretized on general irregular meshes and special monotone finite-difference schemes are derived.

The problem of data assimilation for soil water movement

François-Xavier Le Dimet, Victor Petrovich Shutyaev, Jiafeng Wang, Mu Mu (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.

The problem of data assimilation for soil water movement

François-Xavier Le Dimet, Victor Petrovich Shutyaev, Jiafeng Wang, Mu Mu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the...

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for...

Currently displaying 81 – 100 of 102