Displaying 21 – 40 of 42

Showing per page

Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions

Simone Deparis, Miguel Angel Fernández, Luca Formaggia (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure....

Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions

Simone Deparis, Miguel Angel Fernández, Luca Formaggia (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of...

Adaptive modeling for free-surface flows

Simona Perotto (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

This work represents a first step towards the simulation of the motion of water in a complex hydrodynamic configuration, such as a channel network or a river delta, by means of a suitable “combination” of different mathematical models. In this framework a wide spectrum of space and time scales is involved due to the presence of physical phenomena of different nature. Ideally, moving from a hierarchy of hydrodynamic models, one should solve throughout the whole domain the most complex model (with...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment

François Bouchut, Tomás Morales de Luna (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

Laura Gastaldo, Raphaèle Herbin, Jean-Claude Latché (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of...

An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations

Thierry Gallouët, Laura Gastaldo, Raphaele Herbin, Jean-Claude Latché (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a pressure correction scheme for the barotropic compressible Navier-Stokes equations, which enjoys an unconditional stability property, in the sense that the energy and maximum-principle-based a priori estimates of the continuous problem also hold for the discrete solution. The stability proof is based on two independent results for general finite volume discretizations, both interesting for their own sake: the L2-stability of the discrete advection operator provided it...

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly...

Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow

Jiří Mikyška, Tissa H. Illangasekare (2007)

Kybernetika

We have developed a multiphase flow code that has been applied to study the behavior of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation, discretization, and use the model for numerical investigation of sensitivity of the NAPL plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed repeatedly with modified parameters of the Brooks–Corey capillary...

Application of homogenization theory related to Stokes flow in porous media

Børre Bang, Dag Lukkassen (1999)

Applications of Mathematics

We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.

Currently displaying 21 – 40 of 42