Page 1

Displaying 1 – 6 of 6

Showing per page

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

On the Newton partially flat minimal resistance body type problems

M. Comte, Jesus Ildefonso Díaz (2005)

Journal of the European Mathematical Society

We study the flat region of stationary points of the functional Ω F ( | u ( x ) | ) d x under the constraint u M , where Ω is a bounded domain in 2 . Here F ( s ) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Ω is a ball. We also analyze some other qualitative properties. Moreover, we show the...

Currently displaying 1 – 6 of 6

Page 1